American University of Beirut

Department of Electrical and Computer Engineering
EECE 310 Electronics
Final Exam - Closed Book December 18, 2015

ALL QUESTIONS ARE GRADED EQUALLY PENALTY IS 5 TO I

NAME \qquad ID number
signature here
SIGN: I HAVE NEITHER GIVEN NOR RECEIVED AID ON THIS EXAM

```
*
```



```
* There are 8 pages and 25 problems
\(\stackrel{*}{*}\)
\(\stackrel{*}{*}\)
* Unless otherwise specified, assume that:
- \(V_{\mathrm{T}}=25 \mathrm{mV}\)
- \(\left|V_{\text {Be(ACTIVE) }}\right|=0.7 \mathrm{~V}\)
- \(\left|V_{\mathrm{BE}(\mathrm{SAT})}\right|=0.7 \mathrm{~V}\)
- \(\left|V_{\mathrm{CE}(\mathrm{SAT})}\right|=0.2 \mathrm{~V}\)
- \(\left|V_{\text {CE(EDGE OF SAT) }}\right|=0.3 \mathrm{~V}\)
- All capacitors are very large
- Base-width modulation (Early effect) and channel-length modulation
    effects are negligible
```

1. In the circuit shown below, the diode is ideal. At what value of V_{A} (in V) does the diode start to conduct? Assume that $R_{\mathrm{A}}=22 \mathrm{k} \Omega, V_{\mathrm{B}}=16 \mathrm{~V}$, and $R_{\mathrm{B}}=10 \mathrm{k} \Omega$.

a) 35.2
b) 30.8
c) 26.4
d) 39.6
e) 44.0
2. Find the current in R_{A} (in mA) when $V_{\mathrm{A}}=10 \mathrm{~V}$.
a) 0.750
b) 0.813
c) 0.875
d) 0.938
e) 0.688
3. In the circuit shown below, the diode drops 0.7 V when conducting, and is considered an open-circuit when OFF. Find the maximum diode current (in mA) if v_{S} is a square wave that varies between +20 V (for 50% of the time) and -20 V (for the other 50% of the time). Assume $V_{\mathrm{A}}=8 \mathrm{~V}$ and $R=2.2 \mathrm{k} \Omega$.

a) 2.86
b) 5.14
c) 4.23
d) 3.77
e) 3.32
4. In the previous problem, find the average value of the output voltage v_{O} (in V).
a) -3.65
b) -3.15
c) -5.65
d) -4.65
e) -4.15
5. A series connection of 10 identical PN junction diodes in the same polarity, also connected in series with a battery such that all diodes are forward biased, results in a forward current of 1 mA when the battery voltage is 7 V , and 6 mA when the battery voltage is 7.5 V . Find the value of n for the diodes.
a) 1.820
b) 1.116
c) 1.243
d) 1.443
e) 1.028
6. Consider the Zener diode in the circuit shown below. The diode has $V_{\mathrm{Z} 0}=12.0 \mathrm{~V}$, $r_{\mathrm{Z}}=100 \Omega$, and $I_{\mathrm{ZK}}=5 \mathrm{~mA}$. Find the output voltage v_{O} (in V) when v_{S} is 35.0 V ?

a) 10.0
b) 11.0
c) 11.5
d) 11.7
e) 11.9
7. A logic inverter has $N M_{\mathrm{L}}=N M_{\mathrm{H}}=0.5 \mathrm{~V}, V_{\mathrm{OL}}=0.4 \mathrm{~V}$, and $V_{\mathrm{OH}}=3.5 \mathrm{~V}$. Find the value of V_{IL} for this inverter (in V).
a) 0.9
b) 1.0
c) 0.7
d) 0.8
e) 0.6

The drain current of an enhancement NMOS is measured at several values of V_{GS} and V_{DS}, as shown in the table below. For this MOSFET: $k_{n}^{\prime} \frac{w}{L}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=1 \mathrm{~V}$, and $\lambda \neq 0$. Answer the following 2 questions.

$V_{\mathrm{GS}}[\mathrm{V}]$	$V_{\mathrm{DS}}[\mathrm{V}]$	$I_{\mathrm{D}}[\mathrm{mA}]$
3	3	2.06
3	8	$I_{\mathrm{D} 1}$
3	0.2	$I_{\mathrm{D} 2}$

8. Find the value of $I_{\mathrm{D} 1}$ (in mA).
a) 2.48
b) 2.16
c) 2.24
d) 2.32
e) 2.40
9. Find the value of $I_{\mathrm{D} 2}$ (in mA).
a) 0.38
b) 0.72
c) 1.02
d) 1.28
e) 1.5

The enhancement NMOS in the circuit shown below has $k_{n}^{\prime} \frac{w}{L}=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=1 \mathrm{~V}$, and $\lambda=0 . R_{\mathrm{D}}=6 \mathrm{k} \Omega$ and the MOSFET operates at the boundary between the triode and saturation regions. Answer the following 2 questions.

10. Find the value of the drain current I_{D} (in mA).
a) 2.5
b) 7.5
c) 5
d) 3.75
e) 3
11. Find the value of $R_{\mathrm{S}}($ in $\mathrm{k} \Omega)$.
a) 3.76
b) 4.57
c) 1.37
d) 2.15
e) 2.95
12. The enhancement PMOS in the circuit shown has $k_{p}^{\prime} \frac{W}{L}=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=-1.5 \mathrm{~V}$, and $\lambda=0$. Find V_{DS} (in V) if $R_{\mathrm{D}}=R_{\mathrm{S}}$, and the MOSFET is biased such that $V_{\mathrm{GS}}=-3.5 \mathrm{~V}$.
a) -15
b) -16
c) -17
d) -19
e) -18

13. A voltage amplifier has an open-circuit voltage gain of $100 \mathrm{~V} / \mathrm{V}$, an output resistance of 100Ω, and a power gain of $150 \times 10^{6} \mathrm{~W} / \mathrm{W}$ when a 100Ω load is connected across the output terminals. Find the input resistance (in $\mathrm{M} \Omega$).
a) 6
b) 5
c) 2
d) 3
e) 4
14. The enhancement NMOS in the circuit shown below is biased in the saturation region such that the gate to source overdrive voltage V_{OV} is 0.5 V and the drain current $I_{\mathrm{D}}=1 \mathrm{~mA}$. If v_{s} is a 60 mV peak-to-peak sinusoid, find the peak-to-peak variation of v_{o} (in mV). Assume that $\lambda=0$.
a) 36.0
b) 43.2
c) 50.4
d) 21.6
e) 28.8

The enhancement NMOS in the circuit shown below has an early voltage $V_{\mathrm{A}}=75 \mathrm{~V}$; it is biased in the saturation region such that $I_{\mathrm{D}}=1 \mathrm{~mA}$ and $V_{\mathrm{DS}}=5 \mathrm{~V} . v_{i}$ is a signal voltage. Answer the following 2 questions.

15 . If $R_{\text {out }}=10 \mathrm{k} \Omega$, find the value of $R_{\mathrm{D}}($ in $\mathrm{k} \Omega)$.
a) 25.71
b) 9.23
c) 12
d) 18.26
e) 21.82
16. If $R_{\mathrm{D}}=20 \mathrm{k} \Omega$ and the MOSFET transconductance $g_{\mathrm{m}}=1.2 \mathrm{~mA} / \mathrm{V}$, find the smallsignal voltage gain $v_{o} / v_{i}($ in $\mathrm{V} / \mathrm{V}) ; v_{o}$ is the signal component of the total output voltage v_{O}.
a) -23.94
b) -17.94
c) -20.94
d) -26.94
e) -14.94
17. The $n p n$ transistor in the circuit shown below has $\beta=99$. Find the value of V_{CE} (in V) if $R_{\mathrm{C}}=6 \mathrm{k} \Omega$.
a) 10.18
b) 8.76
c) 7.35
d) 5.93
e) 4.52

18. The npn transistor in the circuit shown below is biased such that $V_{\mathrm{CE}}=4.7 \mathrm{~V}$. Find the value of β.
a) 74
b) 59
c) 119
d) 99
e) 149

19. The $p n p$ transistor in the circuit shown below has $\beta=49$. Find the value of I_{E} (in mA) if $R_{\mathrm{E}}=3 \mathrm{k} \Omega$.
a) 1.12
b) 10.78
c) 5.52
d) 3.71
e) 2.79

20. The $n p n$ transistor in the circuit shown below has $\beta=119$. Find the value of I_{B} (in $\mu \mathrm{A}$) so that the transistor operates at the Edge of Saturation.
a) 29.55
b) 19.63
c) 59.69
d) 47.56
e) 39.53

21. An npn transistor has $\beta=49$; it is biased in the active mode so that its small-signal T-model has $r_{e}=10 \Omega$. Find the value of the DC current in the collector (in mA).
a) 6.13
b) 2.45
c) 3.06
d) 4.90
e) 1.63

The $n p n$ transistor in the circuit shown below is biased in the active region; v_{i} is a pure signal voltage with zero DC component. The small-signal voltage gain $v_{o} / v_{i}=-43.56 \mathrm{~V} / \mathrm{V}$, where v_{o} is the signal component of the total output voltage v_{O}. Answer the following 2 questions.

22. Find the value of β if $R_{\text {in }}=1.25 \mathrm{k} \Omega$.
a) 69
b) 79
c) 89
d) 49
e) 59
23. Find the value of $R_{\text {out }}($ in $\mathrm{k} \Omega$) if $\beta=99$.
a) 1.1
b) 1.2
c) 1.3
d) 1.4
e) 1.5

The $n p n$ transistor in the circuit shown below is biased in the active region; v_{i} is a pure signal voltage with zero DC component. The input resistance of the amplifier $R_{\text {in }}=16.2 \mathrm{k} \Omega$. Answer the following 2 questions.

24. Find the small-signal short-circuit current gain $i_{\text {osc }} / i_{i}$ (in A / A), where i_{i} is the signal component of the total input current i_{I}.
a) -140
b) -80
c) -100
d) -120
e) -60
25. Find the peak value of $v_{i}($ in mV$)$ that results in a signal voltage $v_{b e}$ having a peak value of 1 mV .
a) 20
b) 8
c) 12
d) 16
e) 24

