American University of Beirut

Department of Electrical and Computer Engineering

EECE 310 Electronics

2 hours (120 minutes)

Final Exam - Closed Book December 18, 2015

ALL QUESTIONS ARE GRADED EQUALLY PENALTY IS 5 TO 1

NAME	ID number	signature here
SIGN: I HAVE NEITHER		

There are 8 pages and 25 problems

* *

*

- ✤ Unless otherwise specified, assume that:
- $V_{\rm T} = 25 \, {\rm mV}$
- $|V_{\text{BE(ACTIVE)}}| = 0.7 \text{ V}$
- $|V_{\text{BE(SAT)}}| = 0.7 \text{ V}$
- $|V_{\text{CE(SAT)}}| = 0.2 \text{ V}$
- $|V_{\text{CE(EDGE OF SAT)}}| = 0.3 \text{ V}$
- All capacitors are very large
- Base-width modulation (Early effect) and channel-length modulation effects are negligible

1. In the circuit shown below, the diode is ideal. At what value of V_A (in V) does the diode start to conduct? Assume that $R_A = 22 \text{ k}\Omega$, $V_B = 16 \text{ V}$, and $R_B = 10 \text{ k}\Omega$.

3. In the circuit shown below, the diode drops 0.7 V when conducting, and is considered an open-circuit when OFF. Find the maximum diode current (in mA) if v_S is a square wave that varies between +20 V (for 50% of the time) and -20 V (for the other 50% of the time). Assume $V_A = 8$ V and R = 2.2 k Ω .

4. In the previous problem, find the average value of the output voltage v_0 (in V). a) -3.65 b) -3.15 c) -5.65 d) -4.65 e) -4.15

5. A series connection of 10 identical PN junction diodes in the same polarity, also connected in series with a battery such that all diodes are forward biased, results in a forward current of 1 mA when the battery voltage is 7 V, and 6 mA when the battery voltage is 7.5 V. Find the value of *n* for the diodes. a) 1.820 b) 1.116 c) 1.243 d) 1.443 e) 1.028 6. Consider the Zener diode in the circuit shown below. The diode has $V_{Z0} = 12.0$ V, $r_Z = 100 \Omega$, and $I_{ZK} = 5$ mA. Find the output voltage v_O (in V) when v_S is 35.0 V?

7. A logic inverter has $NM_L = NM_H = 0.5 \text{ V}$, $V_{OL} = 0.4 \text{ V}$, and $V_{OH} = 3.5 \text{ V}$. Find the value of V_{IL} for this inverter (in V). a) 0.9 b) 1.0 c) 0.7 d) 0.8 e) 0.6

The drain current of an enhancement NMOS is measured at several values of V_{GS} and V_{DS} , as shown in the table below. For this MOSFET: $k'_n \frac{w}{L} = 1 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $\lambda \neq 0$. Answer the following 2 questions.

$V_{\rm GS}$ [V]	$V_{\rm DS}$ [V]	I _D [mA]
3	3	2.06
3	8	I _{D1}
3	0.2	I _{D2}

8. Find the va a) 2.48	alue of <i>I</i> _{D1} (in b) <mark>2.16</mark>	mA). c) 2.24	d) 2.32	e) 2.40	
9. Find the va a) <mark>0.38</mark>	alue of <i>I</i> _{D2} (in b) 0.72	mA). c) 1.02	d) 1.28	e) 1.5	

The enhancement NMOS in the circuit shown below has $k'_n \frac{W}{L} = 2 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $\lambda = 0$. $R_D = 6 \text{ k}\Omega$ and the MOSFET operates at the *boundary* between the triode and saturation regions. Answer the following 2 questions.

12. The enhancement PMOS in the circuit shown has $k'_p \frac{w}{L} = 2 \text{ mA/V}^2$, $V_t = -1.5 \text{ V}$, and $\lambda = 0$. Find V_{DS} (in V) if $R_{\text{D}} = R_{\text{S}}$, and the MOSFET is biased such that $V_{\text{GS}} = -3.5 \text{ V}$.

13. A voltage amplifier has an *open-circuit* voltage gain of 100 V/V, an output resistance of 100 Ω , and a power gain of 150×10^6 W/W when a 100 Ω load is connected across the output terminals. Find the input resistance (in M Ω). a) **6** b) 5 c) 2 d) 3 e) 4 14. The enhancement NMOS in the circuit shown below is biased in the saturation region such that the gate to source overdrive voltage V_{OV} is 0.5 V and the drain current $I_D = 1$ mA. If v_s is a 60 mV peak-to-peak sinusoid, find the peak-to-peak variation of v_o (in mV). Assume that $\lambda = 0$.

The enhancement NMOS in the circuit shown below has an early voltage $V_A = 75$ V; it is biased in the saturation region such that $I_D = 1$ mA and $V_{DS} = 5$ V. v_i is a signal voltage. Answer the following 2 questions.

16. If $R_D = 20 \text{ k}\Omega$ and the MOSFET transconductance $g_m = 1.2 \text{ mA/V}$, find the smallsignal voltage gain v_o/v_i (in V/V); v_o is the signal component of the total output voltage v_O . a) -23.94 b) -17.94 c) -20.94 d) -26.94 e) -14.94

17. The *npn* transistor in the circuit shown below has $\beta = 99$. Find the value of V_{CE} (in V) if $R_C = 6 \text{ k}\Omega$.

a) 10.18 b) 8.76 c) 7.35 d) 5.93 e) 4.52

18. The *npn* transistor in the circuit shown below is biased such that $V_{CE} = 4.7$ V. Find the value of β .

19. The *pnp* transistor in the circuit shown below has $\beta = 49$. Find the value of I_E (in mA) if $R_E = 3 \text{ k}\Omega$.

a) 1.12

20. The *npn* transistor in the circuit shown below has $\beta = 119$. Find the value of $I_{\rm B}$ (in μ A) so that the transistor operates at the *Edge of Saturation*.

21. An *npn* transistor has $\beta = 49$; it is biased in the active mode so that its small-signal T-model has $r_e = 10 \Omega$. Find the value of the DC current in the collector (in mA). a) 6.13 b) 2.45 c) 3.06 d) 4.90 e) 1.63 The *npn* transistor in the circuit shown below is biased in the active region; v_i is a pure signal voltage with zero DC component. The small-signal voltage gain $v_o/v_i = -43.56$ V/V, where v_o is the signal component of the total output voltage v_O . Answer the following 2 questions.

22. Find t	he value of β if	$R_{\rm in} = 1.25 \ \rm k\Omega.$		
a) 69	b) 79	c) 89	d) <mark>49</mark>	e) 59
23. Find t	he value of Rout	$(in k\Omega)$ if $\beta = \beta$	99.	
a) <mark>1.1</mark>	b) 1.2	c) 1.3	d) 1.4	e) 1.5

The *npn* transistor in the circuit shown below is biased in the active region; v_i is a pure signal voltage with zero DC component. The input resistance of the amplifier $R_{in} = 16.2 \text{ k}\Omega$. Answer the following 2 questions.

24. Find the small-signal short-circuit current gain i_{osc}/i_i (in A/A), where i_i is the signal component of the total input current i_I .

a) -140 b) -80 c) -100 d) -120 e) -6025. Find the peak value of v_i (in mV) that results in a signal voltage v_{be} having a peak value of 1 mV. a) 20 b) 8 c) 12 d) 16 e) 24

EECE 310 - Final Exam - Fall 2015 - Page 8 of 8